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Article Info

Abstract

A normal or pure vector r is one whose components are scalars multiplied by the unit
basis vectors. It is shown that factors of the unit bases vectors, to represent a complex

vector, in its simplest form become complex numbers, (a
i
 + jb

i
), for j = 1 .  Thus,

each factor of each axis can have a real part and an imaginary part. It is known that both
the real and imaginary parts of a complex number are imagined as lines perpendicular to
each other. From this, an imaginary and perpendicular axis is conceived as created by
each real axis for defining N-Dimensional complex vectors (or pure, for j = 0).
Multidimensional Dot and Cross product of two complex vectors were achieved.
Similarly, Multidimensional Dot and Cross Triple Product of three complex vectors
were obtained. In this way, new multidimensional properties of pure and complex
vectors definitions were found.
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1. Introduction

As has been known for a long time, complex numbers appear, for example, as solution of  system of equations to find
the intersection of curves or lines that do not actually intersect. The obtained roots that qualify this non-existent
cutoff point are what has been called complex numbers. In following Section 2, we used the strategy of solving a
system of equations of lines that do not intersect, such as the case of the two-dimensional parabola and the linear
equation of its directrix located in its same plane, finding its complex roots in a natural vector form. The analysis of
the result lead to the requirement of a four-dimensional space to be represented, with two real axes and two imaginary
ones. The problem was then posed within a three-dimensional space, and its complex roots required six dimensions,
confirming the 2N-dimensional structure obtained earlier. With these results, in Sections 3 and 4 a formal definition
of complex vectors was given. In Section 5 the multidimensional dot and cross products of pure and complex vectors
were developed. In Section 6, a discussion of these results is given. In Sections 7 and 8 were achieved the
multidimensional Cross and Dot vector triple products. Section 9 has a summary of complex vector features and
Section 10 our conclusions.
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2.  Cut of a Parabola with its Directrix

2.1 Two-Dimensional Cut of a Parabola with its Directrix

As it is known, a parabola is the locus of the points equidistant from a point called focus and a straight line called
directrix also located in the plane of the curve, see Figure 1. By definition they never intersect. The distances denoted
by d from any point P(x, y) of the curve to the focus F(g, h), is d2 = (x – g)2 + (y – h)2 and to the directrix,

    2
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m x x l y y
d
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  



 respectively; where the values of l and m define the direction of the directrix, which passes

through the point P(x
0
, y

0
), also a point of the axis of the parabola. Equating the two distances, we can obtain another

general equation of the Parabola, which depends on the focus F(g, h), the point of intersection of the directrix and the
axis of symmetry, and the values of l and m, which define the orientation of the directrix. On the other hand, any point

on the directrix must satisfy: 0 0x x y y

l m

 
 , or:  0 0

m
y x x y

l
    and  0 0

l
x y y x

m
   ; thus, its equation also

corresponds to: l(y – y
0
) – m(x – x

0
) = 0. The values of and m defining the directrix can be any pair of values that are

kept proportional to each other. Solving the system of equations coming from establishing the equality of the distances

from a point P(x, y) in the curve to the Focus F and to its directrix, d PF PP  , the values (x, y) of the “cut-off point”

of the parabola and its directrix are obtained:
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...(1)

Substituting the y value by the expression  0 0

m
y x x y

l
   , coming from the equation of the directrix; multiplying

by l2 and making p
x
 = lg, and q

x
 = mx

0
 – l(y

0
 – h), we have:

Figure 1: Relations Between the Parabola and its Directrix
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...(2)
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Solving and simplifying:
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lp mq lp mq l m p q lp mq j lq mp

x
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x
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                       


...(4)

Notice that in Equation (4), the expression l(x
0
 – g) + m(y

0
 – h) appears two times in the numerator. The way this

expression was arrived at was: that which is within the square root was obtained by adding and subtracting the term,
l 2(x

0
 – g)2 + m2(y

0
 – h)2, see this below:

         2 22 2
0 0 0 0x xlq mp l mx l y h mlg l m x g l y h          

        2 2 2 22 2 2 2 2
0 0 0 0l m x g l y h l x g m y h         

       2 22 2
0 0 0 02l x g m y h m x g l y h        

            22 2 22 2 2
0 0 0 0x xlq mp l l m x g y h l x g m y h               ...(5)

Furthermore, by adding and subtracting to the first member of the numerator, (lp
x
 + mq

x
), the term l 2(x

0
 – g), we

obtain again the expression l(x
0
 – g) + m(y

0
 – h) in it:

            2 2 2 2 2 2 2
0 0 0 0 0 0 0 0x xlp mq l g m mx l y h l g m x lm y h l g m x l x g lm y h l x g                

     2 2 2
0 0 0l m x lm y h l x g             2 2

0 0 0x xlp mq l m x l l x g m y h          ...(6)

And the Equation (4) is so obtained. Dividing numerator and denominator by l 2 + m2: we get
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The expression, l(x
0
 – g) + m(y

0
 – h), which appears in the first term and in the radical sign of the numerator, is the dot

product of the following two vectors: li + mj and (x
0
 – g)i + (y

0
 – h)j.  Since they are the expressions of the  directrix and

parabola’s axis they are perpendicular to each other, so their dot product must be zero. Thus, defining

   2 2

0 0 0a x g y h     and 2 2
0b l m  , and simplifying, the “cut” of the curve with its directrix is given by:

   0 0 0 0 0 0/ , /x x jl a b y y jm a b    ...(7)

For example, in Figure 1, triangles P’AP
0
 and P

0
A

0
P are proportional. By taking the values of l and m as

l = –p(y
0
 – h) and m = p(x

0
 – g) where proportionality is ensured by the effect of the constant p, their dot product become

null, as follows:

             0 0 0 0 0 0 0 0 0p y h p x g x g y h p y h x g p x g y h                    i j i j ...(8)

With the last definitions we can write:
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   2 22 2 2 2 2 2
0 0 0l m p x g p y h p a      ...(9)

and the “cut off” in this case can be represented by:

   
0 0

0 0 0 0

/ , /

,

x x jl p y y jm p

x x j x g y y j y h

     
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...(10)

Since imaginary parts behave as perpendicular vectors to the real ones, let’s try next to identify them, in fact, as true
vectors.

2.2 Interpretation of the Perpendicularity of Imaginary and Real Parts as Authentic Vector Axes

The perpendicularity between the imaginary and real parts of a complex number is an intuitive characteristic that works
fine and is accepted worldwide. However, when this accepted feature, is diagramed in a drawing, the particle, 1j   ,
does not appear affecting the representation of the imaginary and real parts of complex numbers. By considering these
aspects in the definition of complex vectors, a mathematical interpretation could be: that the imaginary unit vector in the
direction of the imaginary axis comes from the product of such particle, j, by the unit vector along the coordinate
involved, i.e.: multiplying the particle, j, on the x axis by the unit vector i, and the same particle j, on the y axis by the unit

vector j, would define the products, j i i  and j j j , as imaginary unit vectors perpendicular to i, and j, respectively,,

and also between them. Then, by doing these actions on the expressions of x and y in Equation (7), and after multiplying
and reordering, we obtain as result a four-dimensional complex vector r composed by a real vector r

0
 and an imaginary

one 
0a , in the following way:
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By remembering that: 2 2 2
0l m b  ...(13)
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0 0r

r

a

...(15)

Since the real unit vectors about the real axes, i, j and the imaginary unit vectors, about the imaginary axes i , j ,

define planes perpendicular to each other, with the origin O as the only common point, both resultant vectors, r
0
 and 

0a

are also perpendicular. Setting 
0a  as:

               0 0 0 0 0 0/ / /l m a b l j m j a b j l m a b             0 i j i ja i j ...(16)

Namely, multiplication by j indicates that the resulting vector:

   0 0/j l m a b 0 i ja ...(17)

is perpendicular to vector l mi j , which is the direction of the directrix. So, 
0a  is perpendicular to the plane formed by

directions l mi j  and r
0
.

2.3 Cut of a Parabola with its Directrix in a Multi-Dimensional Space

Similarly, extending the cut of a parabola with its directrix line inside an N-dimensional space produces 2N-dimensional
complex roots that can be expressed, with similar definitions to those of 2.1 and 2.2, as the following complex vector:
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        
0 0 0 /x y z l m n p                0r i j k r i j k a0r ...(18)

Similarly, defining:

     2 2 22 2 2 2 2
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2
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0

; ; ; ; ;
a

x y z l m n a j j j
b   

 
            

 
0 i j k  0r a i j k ...(20)

we have:

     2 2 22 2 2 2 2
0 0 0 0 0 0 0 0r a x y z x g y h z q             r ...(21)

Since all unit vectors are perpendicular to each other, so are r
0
 and 

0a :

        0 0

0 0

a a
l m n j l m n

b b  

   
             

   
0 i j k a i j k ...(22)

Thus, when direction (l, m, ..., n), is multiplied by the particle 𝑗 = √−1 , it becomes perpendicular to both the directrix
and the axis of the parabola. General examples of complex vectors are developed next.

3. General Complex Vector Definition

Thus, from the results above an “N-dimensional” complex vector needs 2N dimensions to be algebraically represented
and can be simply defined as:

         ˆ ˆ ˆa jb c jd s jt a c s b d t                r i j n i j n  i j n ...(23)

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ;a c s b d t                     r i j n u r u i j n u u   ...(24)

   

2 2 2 2 2 2

2 2 2 2 2 2 2 2

ˆ ˆ;

ˆ

a c s b d t

r a c s b d t

 

 

           
 

           

 

 

 
...(25)

where, the perpendicular unit basis vectors: i, ̂i , j, ˆ
j , …, n, ˆn ,  constitute a 2N-dimensional space: N real dimensions

and N perpendicular imaginary ones, with a common origin O(0, 0, .., 0; 0, 0, ..,0). Likewise, given the perpendicularity
between the real and imaginary N-dimensional unit vectors, the total resultant vectors, real  = u, and imaginary
ˆ ˆ  u are similarly perpendicular to each other. This defines r =  ̂  as the total complex resultant vector, with its real

and imaginary parts perpendicular to one another. Recalling some of the properties of the dot and cross product of pure
vectors that can be applied and extended to complex vectors. From now on, the imaginary vector ̂i  will be written
without the subscript that indicated perpendicularity, leaving only the italic format to simplify its writing, ˆ ˆ

 i i .

4. Characteristics of Dot Product and Cross Product of Two Vectors

4.1. Multi-Dimensional Scalar or Dot Product of Two Pure Vectors

As it is known, the scalar product of two vectors a and b is a scalar number defined as the product of their magnitudes
multiplied by the cosine of the angle  between the two vectors:

cos a b a b ...(26)

And on the other hand, in an N-dimensional space, for a = (a
x
, a

y
, ..., a

z
) and b = (b

x
, b

y
, ..., b

z
):

x x y y z za b a b a b    a b  ...(27)

Where, 2 2 2
x y za a a   a   and 2 2 2

x y zb b b   b  ...(28)
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4.2 Multi-Dimensional Cross or Vector Product of Two Pure Vectors

The cross product of two vectors a and b, forming an angle   between them, can be defined, as a vector c perpendicular
to a and b with the following features:

 2 2 22sin 1 cos        c a b a b n a b n a b a b n ...(29)

for  2 2 22sin 1 cos      c a b a b a b a b ...(30)

Thus, any different approach of the multidimensional product of two pure vectors must have a result equal to
Equations (29) and (30) as is demonstrated next in an N-dimensional space with the following expression:

 
 

2 2 2 2 2

2 2 2 2 2

, , , , ,

, , , , ,

, , , , ,

x y v w z

x y v w z

x y v w z

x y v w z

unit vectors
a a a a a

a a a a a
b b b b b

b b b b b

                
           

i j v w k
a

a
b

b








...(31)

The cross product can also be defined as the sum of C
N,2

 = N(N – 1)/2square matrices, 2x2 each multiplied by a
multivector u

]pq[
 perpendicular to the unit vectors p, q, containing the remaining N – 2 unit vectors. Multivector u

]pq[
 is

constructed by eliminating N – 2 columns and the first row, and after placing the first column in the last position and
repeating the same structural calculation:

x y v w z

x y v w z

a a a a a

b b b b b

 
i j v w k

a b





...(32)

For:

u
]ij[

 = v, ..., w, k; u
]iv[

 = j, ..., w, k; ...; u
]iw[

 = j, v, ..., k; u
]ik[

 = j, v, ..., w; u
]jv[

 = i, ..., w, k; ... ... ...; u
wk

 = i, j, v, ...;

where the next equality must be satisfied (as indeed it is):

 2 2 2 x y y wx v x z w z

x y y wx v x z w z

a a a aa a a a a a

b b b bb b b b b b
           c a b a b a b n  ]ij[ ]iv[ ]ik[ ]jw[ ]wk[u u u u u ...(33)

       x y x y x v x y x z x z w z w za b b a a b b a a b b a a b b a        c ]ij[ ]iv[ ]ik[ ]wk[u u u u ...(34)

Absolute value of c (that is   c ) also can be calculated from above as:

       2 2 2 2

2x y x y x v x v x z x z w z za b b a a b b a a b b a a b b a           c a b c n n ...(35)

This was checked with Sagemath software verifying that the following is null:

         
22 2 2 2 2 2

0x y x y x v x v x z x z w z w za b b a a b b a a b b a a b b a              
a b a b  ...(36)

5. General Dot and Cross Product of Two Complex Vectors

Previous definitions obtained for pure vectors can be applied directly to complex vectors. Let’s see some examples, to
realize about other features of complex vectors’ dot and cross product.

5.1 Dot and Cross Product of TWO Complex Vectors in a Space of Two Dimensions

For example, let two complex vectors be: r
1
 = (x

11
 + jy

11
)i + (x

12
 + jy

12
)j and r

2
 = (x

21
 + jy

21
)i + (x

22
 + jy

22
)j. Its dot product,

converted and reordered, becomes:

       11 11 12 12 21 21 22 22 11 12 11 12 21 22 21 22
ˆ ˆ ˆ ˆx jy x jy x jy x jy x x y y x x j y i y j                             1r r i j i j i j i j i2

11 21 12 22 11 21 12 22x x x x y y y y    ...(37)



Page 7 of 19Jorge A. Franco / Int.J.Pure&App.Math.Res. 3(2) (2023) 1-19

The cross or vector product of these two complex vectors, reordered into a 4D-space, arrives at:

       11 11 12 12 21 21 22 22 11 12 11 12 21 22 21 22
ˆ ˆ ˆ ˆx jy x jy x jy x jy x x y y x x y y                              i j i j i j i ji j i j1 2r r

...(38)

              11 22 12 21 11 21 11 21 11 22 12 21 12 21 11 22 12 22 12 22
ˆ ˆ ˆ ˆx x x x x y y x x y y x x y y x x y y x               i j i i j ji j i j1 2r r

  11 22 12 21
ˆ ˆy y y y  i j ...(39)

where, i,  j, are the real unit vectors, and, ji = î , jj = ĵ , are the imaginary ones of the 4D axes, all perpendicular among

them. Expressing the following C
4,2

 = 6 cross products based on the six unit vectors: i x j = n
ij
 = u

]ij[
 = ( î , ĵ ),

i x î  = n
i î

 = u
]i î [

 = (j, ĵ ), i x ĵ  = n
i ĵ  = u

]i ĵ [
 = ( î , j), j  x î  = n

j î
 = u

]j î [
 = (𝐢, 𝒋̂), j  x ĵ = n

j ĵ
 = u

]j ĵ [
 = (i, î ), î  x ĵ  = n

î ĵ
= 𝐮]𝒊̂𝒋̂[ = (i, j), for ]p,q[  (p,q). Thus, the complex vector c = r

1
 x r

2
, reorders to the following expression:

           ˆ ˆ ˆ ˆ ˆ̂11 22 12 21 11 21 11 21 11 22 12 21 12 21 11 22 12 22 12 22 11 22 12 21x x x x x y y x x y y x x y y x x y y x y y y y             ij i i j j
c n n n n n n

i j i j ij1 2r r

...(40)

           2 2 2 2 2

11 22 12 21 11 21 21 11 11 22 12 21 12 21 11 22 12 22 12 22 11 22 12 21x x x x x y x y x y y x x y y x x y y x y y y y             c n1 2r r

...(41)

where c is perpendicular to r
1
 and r

2
 and n is a complex unit vector with equal direction as c. Notice that products of unit

basis i, j, î , ĵ , creates a Six-Dimensional space with 6 unit-basis vectors n
p,q

 = p x q = u
]p,q[

, for ]p,q[= the remaining two

unit vectors, different of p, q; perpendicular among them and to p, q.  An easy way to construct and calculate the terms
in parentheses in Equation (41) is to use the 3x4 matrix arrangement:

11 12 11 12

21 22 21 22

ˆ ˆ

x x y y

x x y y

i j i j

...(42)

The “2D” cross product reordered to as a 4D product becomes equal to the number of  C
4,2

 = 6 combinations, put
alike into matrix form, where the first row indicates the referred unit vector and the involved columns (p, q) (notice that
the six n

pq
 = u

]pq[
 = (r, t), for r, t   p, q bases generate a six-dimensional space), with the sign of the 2x2 matrices in

ascending order, namely, by eliminating the first row and the (r, t) columns, we have:

11 12 11 11 11 12 12 11 12 12 11 12
ˆ̂ ˆ ˆ ˆ ˆ

21 22 21 21 21 22 22 21 22 22 21 22

x x x y x y x y x y y y

x x x x x y x y x y y y
        ijj

c u u u u u u1 2r r
ij j ji ij ii ...(43)

To prove Equations (41), (42) and (43), according to the definition of the cross product, r
1
 x r

2
 = r

1
r

2
[sin(

2
 – 

1
)]n =

r
1
r

2
sinn, for r

1
 = x

11
i + x

12
j + y

11 î  + y
12 ĵ  and r

2
 = x

21
i + x

22
j + y

21 î  + y
22 ĵ , and reordering, we can check the double

equality:

   
   

 

2 2 2 2 2 2 2 2
11 12 11 12 21 22 21 222 2

1 2 1 2 2

11 21 12 22 11 21 12 22

x x y y x x y y
r r r r

x x x x y y y y

      
     

   
c n n1 2r r ...(44)

Or, establishing that the expression inside the square root in Equaiton (44) minus that of the square root in Equation
(41), by using the help of Sagemath software, is easy to show that such difference is null:

var(‘x_11,x_12,x_21,x_22, y_11, y_12,y_21,y_22’)

expand((((x_11)^2+(x_12)^2+(y_11)^2+(y_12)^2)*((x_21)^2+(x_22)^2+(y_21)^2+(y_22)^2) - ((x_11*x_21 + x_12*x_22
+ y_11*y_21 + y_12*y_22)^2)) ((x_11*x_22 - x_12*x_21 )^2 + (x_11*y_21 - x_21*y_11)^2 + (x_11*y_22 - y_12*x_21)^2
+ (x_12*y_21 - y_11*x_22)^2 + (x_12*y_22 - y_12*x_22)^2 + (y_11*y_22 - y_12*y_21)^2)) == 0 ...(45)
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It is worth noticing that vector c, can be reduced to two terms: au
R
 , a real vector constituted by the terms multiplying

the real-basis vectors n
ij
 = i x j and n

î ĵ  = î  x ĵ .  The last unit basis should become a real one perpendicular to i, j and
of course to î , ĵ , because it does not contain internally the factor j, but the factor j2 = –1, which is a real number and
it should not create an imaginary new axis, but a real new axis. Thus, it suggests us that we can define it as a new real

unit basis as corresponding to a component of au
real

 without the factor j. The term ˆb imagu is built by the remaining four

imaginary unit bases containing the factor j. In this way,

𝐜 = 𝐫𝟏 × 𝐫𝟐 = 𝑎𝐮𝐑 + 𝑏𝒖ෝ𝑰 = 𝑎𝐮𝐑 + 𝑏(𝑗𝐮𝐈) = 𝑎𝐮𝐑 + 𝑗𝑏𝐮𝐈 ...(46)

Thus, we have returned the change 𝐜 = 𝑎𝐮𝐑 + 𝑏𝒖ෝ𝑰, to 𝐜 = 𝑎𝐮𝐑 + 𝑗𝑏𝐮𝐈, in order to emphasize the perpendicularity

of vectors u
R
 and 𝒖ෝ𝑰 = 𝒖𝑰 = 𝑗𝐮𝐈.  So, expressions of au

R
  and bu

I
 in (49), from (46), explicitly become:

𝑎𝐮𝐑 =  (x11x22 − x12x21)𝐮𝐢𝐣 + (y11y22 − y12y21)u
iJ ...(47)

b𝒖𝑰 =  (x11y21 − x12y11)𝐮𝐢𝒊̂ + (x11y22 − x21 y12)𝐮𝐢𝒋̂ + (x12y21 − x22y11)𝐮𝐣𝒊̂ + (x12y22 − x22y12)𝐮𝐣𝒋̂  ...(48)

    2 2

11 22 12 21 11 22 21 12a x x x x y y y y   R Ru u ...(49)

       2 2 2 2

11 21 12 11 11 22 12 21 12 21 11 22 12 22 12 22b x y x y x y x y x y x y x y y x       I Iu u ...(50)

Observe that in the case of pure vectors, without imaginary axes, the expression of c reduces to:

 11 12
11 12 11 22 21 12

21 22
21 22

0

0

x x
x x x x x x

x x
x x

     
k i j

c k k1 2r r

So, it simplifies consistently to the cross product of two pure vectors in a 2-Dimensional space.

5.2 Dot and Cross Product of TWO Complex Vectors in a 3-Dimensional Space

Let’s apply the same procedure to the cross product of the 3D-complex vectors, r
1
 and r

2
, for r

1
 = (x

11
 + jy

11
)i + (x

12
 + jy

12
)j

+ (x
13

 + jy
13

)k and r
2
 = (x

21
 + jy

21
)i + (x

22
 + jy

22
)j + (x

23
 + jy

23
)k.

The dot product can be reordered and written as:

           11 11 12 12 13 13 21 21 22 22 23 23x jy x jy x jy x jy x jy x jy                   i j k i j k1 2r r

11 12 13 11 12 13
ˆ ˆ ˆx x x y y y         i j k1 2r r i j k ൣ𝑥21𝐢 + 𝑥22𝐣 + 𝑥23𝐤 + 𝑦21𝒊̂ + 𝑦22 𝒋̂ + 𝑦23 𝒌෡൧

11 21 12 22 13 23 11 21 12 22 13 23x x x x x x y y y y y y      1 2r r ...(51)

For the cross or vector product of two complex vectors in three dimensions (actually six: three real, and three
imaginary axes, as it was within the dot product) we have:

           11 11 12 12 13 13 21 21 22 22 23 23x jy x jy x jy x jy x jy x jy                   i j k i j k1 2r r

11 12 13 11 12 13 21 22 23 21 22 23
ˆ ˆ ˆ ˆ ˆ ˆx x x y y y x x x y y y                 i j k i j ki j k i j k

With a similar cross product layout guide, by eliminating N–2 columns and the first row, as in Equation (42):

11 12 13 11 12 13

21 22 23 21 22 23

ˆ ˆ ˆ

x x x y y y

x x x y y y

i j k i j k

, its order is as follows:

11 13 12 1311 12 11 11 11 12 11 11 12 11 12 12
ˆ ˆ ˆ ˆ ˆ

21 23 22 2321 22 21 21 21 22 21 21 22 21 22 22

x x x xx x x y x y x y x y x y

x x x xx x x y x y x y x y x y
         [ [ [ [ [

c u u u u u u u u1 2 ]ij[ ]ik[ ]i ]jk[]i ]i ]j ]j
r r

j k i j

12 13 13 11 13 12 13 13 12 1311 12 11 12
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

22 23 23 21 23 22 23 23 22 2321 22 21 22

x y x y x y x y y yy y y y

x y x y x y x y y yy y y y
      

[ [ [ [ ] ] [ ] [
u u u u u u u]j ]k ]k ]k j[k i j k i ik jk ...(52)
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Where for example  ˆ
ˆ ˆ, , ,

[
u i k]jk i j . The number of 2x2 matrices given by the combination of 6 dimensions taken in

pairs, is: C
6,2

 = 15, resulting finally a Fifteen-Dimensional space,

         ˆ ˆ ˆ11 22 21 12 11 23 21 13 11 21 21 11 11 22 21 12 11 23 21 13x x x x x x x x x y x y x y x y x y x y           
[ [ [

c u u u u u1 2 ]ij[ ]ik[ ]i ]i ]ir r
i j k

         ˆ ˆ ˆ ˆ12 23 22 13 12 21 22 11 12 22 22 12 12 23 22 13 13 21 23 11x x x x x y x y x y x y x y x y x y x y         
[ [ [ [

u u u u u]jk[ ]j ]j ]j ]ki j k i

         ˆ ˆ ˆ̂ ˆˆ ˆ ˆ13 22 23 12 13 23 23 13 11 22 21 12 11 23 21 23 12 23 22 13x y x y x y x y y y y y y y y y y y y y         
[ [ ] [ ] [ ] [

u u u u u]k ]kj k ij ik jk ...(53)

Direction of resultant vector c is simultaneously perpendicular to: vectors r
1
 and r

2
, all unit vectors u

]mn[
, for ]m, n[

= p, q, r, s; all basis vectors ˆ ˆ ˆ, , , , ,i j k i j k  for any value of m, n, p, q, r, s = ˆ ˆ ˆ, , , , ,i j k i j k . For instance,  ˆ ˆ ˆ, , ,u i]jk[ i j k .

So:

         
         
   

2 2 2 2 2

11 22 21 12 11 23 21 13 11 21 21 11 11 22 21 12 11 23 21 13

2 2 2 2 2

12 23 22 13 12 21 22 11 12 22 22 12 12 23 22 13 13 21 23 11

2 2

13 22 23 12 13 23 23 13 11 22 21 1

x x x x x x x x x y x y x y x y x y x y

x x x x x y x y x y x y x y x y x y x y

x y x y x y x y y y y y

        

            

     

c 1 2r r

     2 2 2

2 11 23 21 13 12 23 22 13y y y y y y y y   

n ...(54)

Checking, as before, this output via:    2 2

1 2 1 2 1 2sinr r r r r r     c n n1 2r r , for r
1
 = (x

11
 + jy

11
)i + (x

12
 + jy

12
)j + (x

13

+ jy
13

)k] and r
2
 = [(x

21
 + jy

21
)i + (x

22
 + jy

22
)j + (x

23
 + jy

23
)k, we obtain:

   2 2

1 2 1 2r r r r    c n1 2r r

  
 

2 2 2 2 2 2 2 2 2 2 2 2
11 12 13 11 12 13 21 22 23 21 22 23

2

11 21 12 22 13 23 11 21 12 22 13 23

x x x y y y x x x y y y

x x x x x x y y y y y y

         


     
n ...(55)

expand(((x_11)^2+(x_12)^2+(x_13)^2+(y_11)^2+(y_12)^2+(y_13)^2)*((x_21)^2+(x_22)^2+(x_23)^2+(y_21)^2 +
(y_22)^2 + (y_23)^2) - (x_11*x_21 + x_12*x_22 + x_13*x_23 + y_11*y_21 + y_12*y_22 + y_13*y_23)^2      -      ((x_11*x_22
- x_21*x_12 )^2 + (x_11*x_23 - x_21*x_13)^2 + (x_11*y_21 - x_21*y_11)^2   +   (x_11*y_22 - x_21*y_12)^2 + (x_11*y_23
- x_21*y_13)^2 + (x_12*x_23 - x_22*x_13)^2   +   (x_12*y_21 - x_22*y_11)^2 + (x_12*y_22 - x_22*y_12)^2 + (x_12*y_23
- x_22*y_13)^2   +   (x_13*y_21 - x_23*y_11)^2 + (x_13*y_22 - x_23*y_12)^2 + (x_13*y_23 - x_23*y_13)^2   +    (y_11*y_22
- y_21*y_12)^2 + (y_11*y_23 - y_21*y_13)^2 + (y_12*y_23 - y_22*y_13)^2)) == 0

As seen, this approach for calculating the cross product of two pure or complex vectors in a space with any number
of dimensions, becomes consistent. On the other hand, we can reduce as above, a resultant vector, to a real and
imaginary two-term vector:

ˆa b   c u1 2r r R Iu ...(56)

For:

           
       

ˆ̂ ˆˆ ˆ ˆ11 22 21 12 11 23 21 13 12 23 22 13 11 22 21 12 11 23 21 13 12 23 22 13

ˆ ˆ ˆ ˆ11 21 21 11 11 22 21 12 11 23 21 13 12 21 22 11 12 22 22 1ˆI

a x x x x x x x x x x x x y y y y y y y y y y y y

bu x y x y x y x y x y x y x y x y x y x y

           

         

ij ik jk

i i i j

u u u u u u u

u u u u

R ij ik jk

i j k i    
     

ˆ ˆ2 12 23 22 13

ˆ ˆ ˆ13 21 23 11 13 22 23 12 13 23 23 13

x y x y

x y x y x y x y x y x y

 
    
 

       

j j

k k k

u u

u u u

j k

i j k

...(57)

If it had been the case of pure vectors, the imaginary axes, ˆ ˆ ˆ, ,i j k  would be null. And, the expression for vector c,

simplifies to the known result for two 3D vectors:

11 13 12 1311 12

21 23 22 2321 22

x x x xx x

x x x yx x
    c u u u1 2 ]ij[ ]ik[ ]jk[r r ...(58)
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     2 2 2

11 22 21 12 11 23 21 13 12 23 22 13x x x x x x x x x x x x       c n1 2r r ...(59)

 In fact, for new vectors without their imaginary parts, r
1
 = (x

11
)i + (x

12
)j + (x

13
)k, r

2
 = (x

21
)i + (x

22
)j + (x

23
)k and for u

]ij[

= k, u
]ki[

 = j, u
]jk[

 = i, by substituting and applying related changes in ascending order, we obtain the cross product we
were used to:

11 13 12 13 13 11 12 1311 12 11 12

21 23 22 23 23 21 22 2321 22 21 22

x x x x x x x xx x x x

x x x x x x x xx x x x
       c u u u k j i1 2 ]ij[ ]ik[ ]jk[r r

     11 22 21 12 13 21 23 11 12 23 22 13x x x x x x x x x x x x       c k j i1 2r r ...(60)

     11 12 13 12 23 22 13 13 21 23 11 11 22 21 12

21 22 23

x x x x x x x x x x x x x x x

x x x

        
i j k

c i j k1 2r r

     2 2 2

12 23 22 13 13 21 23 11 11 22 21 12x x x x x x x x x x x x       c n1 2r r ...(61)

Where, as said, n is a vector perpendicular to r
1
 and r

2
, inside the three-dimensional space. See that Equation (61)

is equal to Equation (59). With these results, we can define the general Dot and Cross product.

5.3 Dot and Cross Product of TWO Complex Vectors in a Space of “N” Dimensions

This general case actually has 2N dimensions, N real and N imaginary ones, and originates 2N axes and 2N terms in the
DOT product:

 1 1 2 1 2
N

i i i ix x y y  1 2r r ...(62)

And achieving C
2N, 2

 = N(2N – 1) terms in the CROSS product, according to the arrangement:

11 12 13 1 11 12 13 1

21 22 21 2 21 22 23 2

ˆ ˆ ˆ ˆ

N N

N N

x x x x y y y y

x x x x y y y y

i j k n 
 
 

i j k n

...(63)

By constructing N(2N – 1) terms all of them with 2x2 matrices of the following types:

1 2

2 2

,
;

1 , 2
a b

a b

x x and
for

x x a N and b N

  
   

a i n b j n
u

 ]ab[

 
 or

ˆ1 1
ˆ

ˆ2 2

ˆ ˆ ˆ,
;

ˆ1 , 2

a d

a d

x y and
for

x y a N and d N

   
 

   
[

a i n
u

 ]ad

d i n 

or 
ˆˆ1 1

ˆˆ] [
ˆˆ2 2

ˆ ˆ ˆˆ ˆ ˆ, , , , ,

ˆˆ 1, , , 2, ,

c d

cd
c d

y y and
u for

y y c N and d N

   
 
    

c i n d j n 
...(64)

The first part of the matrix model is built starting with that involving the first column with the second (x
1a

x
2b

 – x
2a

x
2a

),
then the same first column followed by the third, and so on until the column N is reached (always in ascending order).
Next, for the second part is repeated starting with column 2 followed by the third and then the same second column
followed by the fourth and so on until the columns N–1 and  N are reached, ending the real matrices, and we are at 1/3
of the procedure. Then the process continues in the same way, continuing with the first real column 1 followed by the
first column of the imaginary ones (N+1), but with the imaginary ones named, instead of x

N+1, a 
as y

1,a 
until the penultimate

column is reached followed by the last column, and then we are arrived at 2/3 of the procedure. The last part, only
imaginary, is similar to first part (only real) but instead we will have terms as (y

1c
y

2d
 – y

2c
y

1d
).

After constructing the matrices, and obtaining the terms of the form (x
1a

x
2b

 – x
2a

x
1b

)u
]ab[

, or (x
1a

y
2c

 – x
2a

y
1c

)u
]ac[

, or
(y

1c
y

2d
 – y

2c
y

1d
)u

]cd[
, where its subindexes refers to the position of the specified column of the real or imaginary axes, and
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the subindex of the unit vectors refers to the involved product of the basis vectors. Having achieved these terms, the
Cross Product can be evaluated as shown for “one” (two), “two” (four) and “N” (2N) dimensions.

6. Discussion

The interpretation that the product of a real basis vector, i, j, k, … by the imaginary particle j as another basis vector,
ji = î , jj = ĵ , jk = k̂ , ..., imaginary and perpendicular to that involved, allowed us to obtain  the definition of a complex
vector (a complex line), with the characteristics of an authentic vector, with a real and an imaginary vector part. This
new definition naturally explains the perpendicularity of the imaginary component with the real one in an authentic
vector notation. Such interpretation, allowed us to calculate the scalar and cross products without the influence of
the imaginary particle 1j   , which disappears within the definition of the imaginary basis vectors, ˆ ˆ ˆ, , ,i j k  . It
also allowed obtaining the magnitude, or modulus, of a complex vector via a dot product in the same way as it is for
a pure vector: 2r r   r r r . Viewing two complex vectors as two complex lines which have an angle  between
them  1 2 1 2cos , sinr r r r     n1 2 1 2r r r r  in a space of any number of dimensions, with the definition of imaginary
vectors, without the particle j, is a key aspect not conceived in the works of Hamilton (1844) and of Gibbs (1884) 40
years later, in which the particle j was preserved within the complex number concept, forcing “its module” to be
expressed as known through the scalar product of a complex number times its “conjugate”: z z z  . So, the
definition of the complex vector module, done by these authors in this way, introduced an unsolvable contradiction
with the known definition of the module of a pure vector, r r r× . However, after the pioneering works of these
authors on complex vectors, carriers of this misinterpretation, all those who approached this question using different
paths in their investigations (Silagadze, 2002; Mcloughlin., 2013; Chengshen et al., 2022), through the Jacobi identity
with the application of different multidimensional matrices, or other paths, tried to reach consistent results, again in
our opinion, without success. Perhaps, this could have been the main reason for not succeeding with the
generalization of the scalar and cross product of two multidimensional complex vectors, in spite of the attempts made
until the present years. The new interpretation given to complex vectors in this work, by using the general expressions
of dot and cross product  1 2 1 2cos , sinr r r r    1 2 1 2r r r r , to verify our view of the general used matrix model, made
possible to get natural expressions of the complex vector modulus and the generalization of scalar and cross
products for two vectors in a multidimensional space.

7. N-Dimensional Cross Triple-Product of Three Vectors: c x (a x b)

Applying the general relations given by Gibbs (1884) we could develop the triple cross product of three vectors (pure
or complex). See some examples using the general relationship given in Gibbs (1884):

           d c a b c b a c a b

7.1. Three-Dimensional Cross Triple-Product of Pure Vectors: c x (a x b)

In this example, vectors a, b and c are in the plane XYZ. Thus, we can set a = a
x
i + a

y
j + a

z
k, b = b

x
i + b

y
j + b

z
k and

c = c
x
i + c

y
j + c

z
k, where,            d c a b c b a c a b :

On one hand,

d = c x (a x b) = (c
x
b

x
 + c

y
b

y
 + c

z
b

z
) (a

x
i + a

y
j + a

z
k) – (c

x
a

x
 + c

y
a

y
 + c

z
a

z
) (b

x
i + b

y
j + b

z
k)

:

d = (a
x
c

x
b

x
 + a

x
c

y
b

y
 + a

x
c

z
b

z 
– b

x
c

x
a

x
 – b

x
c

y
a

y
 – b

x
c

z
a

z
)i + (a

y
c

x
b

x
 + a

y
c

y
b

y
 + a

y
c

z
b

z
 – b

y
c

x
a

x
 – b

y
c

y
a

y
 – b

y
c

z
a

z
)j + (a

z
c

x
b

x

+ a
z
c

y
b

y
 + a

z
c

z
b

z
 – b

z
c

x
a

x
 – b

z
c

y
a

y
 – b

z
c

z
a

z
)k

 d = (a
x
c

y
b

y
 + a

x
c

z
b

z
 – b

x
c

y
a

y 
– b

x
c

z
a

z
)i + (a

y
c

x
b

x
 + a

y
c

z
b

z
 – b

y
c

x
a

x
 – b

y
c

z
a

z
)j + (a

z
c

x
b

x
 + a

z
c

y
b

y
 – b

z
c

x
a

x
 – b

z
c

y
a

y
)k

Reordering d = c x (a x b) in 2x2 matrices in ascending order, using the anticommutative law:

              y x y x y z x z x z x x y x y z y z y z x x z x z y y z y zc a b b a c a b b a c z b b a c a b b a c a b b a c a b b a             d i j k

x y x y y z y zx z x z
y z x z x y

x y x y y z y zx z x z

a a a a a a a aa a a a
c c c c c c

b b b b b b b bb b b b

     
                 
     

i j k ...(65)
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On the other hand,

    x y y zx z
x y z

x y y zx z

a a a aa a
c c c

b b b bb b

           
  

d c a b i j k u u uk j i

d = c
y
(a

x
b

y
 – b

x
a

y
)u

jk
 – c

z
(a

x
b

z 
– b

x
a

z
)u

kj
 + c

x
(a

x
b

y
 – b

x
a

y
)u

ik
 + c

z
(a

y
b

z
 – b

y
a

z
)u

ki
 – c

x
(a

x
b

z 
– b

x
a

z
)u

ij
 + c

y
(a

y
b

z
 – b

y
a

z
)u

ji

By using u
jk
 = i, u

ki
 = j, u

ij
 = k; and changing signs according to the anticommutative law:

d = [c
y
(a

x
b

y
 – b

x
a

y
) + c

z
(a

x
b

z 
– b

x
a

z
)]u

jk
 + [–c

x
(a

x
b

y
 – b

x
a

y
) + c

z
(a

y
b

z
 – b

y
a

z
)]u

ki
 + [–c

x
(a

x
b

z 
– b

x
a

z
) – c

y
(a

y
b

z
 – b

y
a

z
)]u

ij

x y x y y z x y y zx z
y z x z y z

x y x y y z x y y zx z

a a a a a a a a a aa a
c c c c c c

b b b b b b b b b bb b

     
            
          

d i j k ...(66)

Or, reordering into a 4x3 skewed cross product matrix, in ascending order, the result is seen directly in Figure  2.

d = c x (a x b) = [c
y
(a

x
b

y
 – b

x
a

y
) + c

z
(a

x
b

z 
– b

x
a

z
)]i + [–c

x
(a

x
b

y
 – b

x
a

y
) + c

z
(a

y
b

z
 – b

y
a

z
)]j + [–c

x
(a

x
b

z 
– b

x
a

z
)

      – c
y
(a

y
b

z
 – b

y
a

z
)]k ...(67)

Results are consistent, as in fact they must be, showing the suitability of the used models for 3D cross triple product
case (but they are applicable to any multi-dimensional cross triple product).

7.2. Four-Dimensional Cross Product of Three Pure Vectors

           d c a b c b a c a b ...(68)

Setting a = a
x
i + a

y
j + a

v
v + a

w
w, b = b

x
i + b

y
j + b

v
v + b

w
w and c = c

x
i + c

y
j + c

v
v + c

w
w.

Using, c . b = c
x
b

x
 + c

y
b

y
 + c

v
b

v
 + c

w
b

w
 and c . a = c

x
a

x
 + c

y
a

y
 + c

v
a

v
 + c

w
a

w
, on the one hand, by developing

(c . b)a – (c . a)b for d = c x (a x b) = (c . b)a – (c . a)b, we have:

d = (c
x
b

x
 + c

y
b

y
 + c

v
b

v
 + c

w
b

w
) (a

x
i + a

y
j + a

v
v + a

w
w) – (c

x
a

x
 + c

y
a

y
 + c

v
a

v
 + c

w
a

w
) (b

x
i + b

y
j + b

v
v + b

w
w)

d = (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
))i + (c

w
(a

y
b

x
 – b

y
a

x
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w
 – b

y
a

w
))j + (c

x
(a

v
b

x

           – b
v
a

x
) + c

y
(a

v
b

y 
– b

v
a

y
) + c

w
(a

v
b

w
 – b

v
a

w
))v + (c

x
(a

w
b

x
 – b

w
a

x
) + c

y
(a

w
b

y 
– b

w
a

y
) + c

v
(a

w
b

v
 – b

w
a

v
))w ...(69)

In this result, by changing the 2x2 matrices with their subscripts to those of the ascending order, and using the law
of anti-commutativity, d changes to:

d = (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
))i + (–c

x
(a

x
b

y
 – b

x
a

y
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w
 – b

y
a

w
))j + (–

c
x
(a

x
b

v
 – b

x
a

v
) – c

y
(a

y
b

v 
– b

y
a

v
) + c

w
(a

v
b

w
 – b

v
a

w
))v + (–c

x
(a

x
b

w
 – b

x
a

w
) – c

y
(a

y
b

w 
– b

y
a

w
) – c

v
(a

v
b

w
 – b

v
a

w
))w ...(70)

On the other hand, (a x b) expressed as 2x2  matrices (total: C
4,2

 = 6), and since each 2x2 matrix comes from eliminating
two columns and the first row, leaving bivector unit bases, we can put:

x y v w

x y v w

a a a a

b b b b

i j v w

, with bivectors defined as 
, ,

, ,

, ,

   
     
    

u v w u j w

u j v u i w

u i v u i j

vw jw

jv iw

iv ij

 then:

Figure 2: Graph Showing the Way to Obtain the Expression Below
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x y y v y wx v x w v w

x y y v y wx v x w v w

a a a a a aa a a a a a

b b b b b bb b b b b b
       a b u u u u u uvw jw jv iw iv ij ...(71)

 The sign of c
p
 in c x (a x b) in this 4D case may be positive or negative, depending on its use. Let’s start with the 

sign for all terms to realize how the law of formation of signs arises:

d = c x (a x b) = (c
x
i + c

y
j + c

v
v + c

w
w)

x y y v y wx v x w v w

x y y v y wx v x w v w

a a a a a aa a a a a a

b b b b b bb b b b b b

         
  

u u u u u uvw jw jv iw iv ij

d =  c
y
(a

x
b

y
 – b

x
a

y
)u

jvw
  c

v
(a

x
b

v 
– b

x
a

v
)u

vjw
  c

w
(a

x
b

w
 – b

x
a

w
)u

wjv
  c

x
(a

x
b

y
 – b

x
a

y
)u

ivw
  c

v
(a

y
b

v 
– b

y
a

v
)u

viw
  c

w
(a

y
b

w
 –

              b
y
a

w
)u

wiv
  c

x
(a

x
b

v
 – b

x
a

v
)u

ijw
  c

y
(a

y
b

v 
– b

y
a

v
)u

jiw
  c

w
(a

v
b

w
 – b

v
a

w
)u

wij
  c

x
(a

x
b

w
 – b

x
a

w
)u

ijv
  c

y
(a

y
b

w 
– b

y
a

w
)u

jiv
 

             c
v
(a

v
b

w
 – b

v
a

w
)u

vij

By taking the unit bases with three-letter subscripts as equal to that missing, i.e.: u
jvw

 = j x (v, w) = i, u
vwi

 = v x (w, i) =
j, u

wij
 = w x (i, j) = v, u

ijv
 = i x (j, v) = w;  and giving negative sign to the matrix without the linked missing basis m(i, j, v, w)

in a
m
(a

x, y, v, w
), inside the parenthesis, as the sign of the coefficient c

p
, (bold = positive) for p = x, y, v, w, we obtain:

 d = [c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
)]i + [–c

x
(a

x
b

y
 – b

x
a

y
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w
 – b

y
a

w
)]j +

[–c
x
(a

x
b

v
 – b

x
a

v
) – c

y
(a

y
b

v 
– b

y
a

v
) + c

w
(a

v
b

w
 – b

v
a

w
)]v + [–c

x
(a

x
b

w
 – b

x
a

w
) – c

y
(a

y
b

w 
– b

y
a

w
) – c

v
(a

v
b

w
 – b

v
a

w
)]w ...(72)

Note: This process can be done directly by operating the following ascending order 4x4 matrix and locating the first
column as the last one after each matrix operation, and doing the 2x2 last rows as indicated by the skewed arrows until
finishing:

Figure 3: Graph Showing the Way to Obtain the Expression on the Right

So, we arrive at a replica of the results found above. This procedure to obtain the sign is easily generalizable and
applicable to multidimensional cross triple-product of complex vectors.

7.3. Fifth-Dimensional Cross Product of Three Pure Vectors: c x (a x b)

Setting a = a
x
i + a

y
j + a

v
v + a

w
w + a

k
k, b = b

x
i + b

y
j + b

v
v + b

w
w + b

k
k and c = c

x
i + c

y
j + c

v
v + c

w
w + c

k
k, and developing

a x b as a sum, C
5,2 

= 10, of 2 x 2 matrices in ascending order and using, c . b = c
x
b

x
 + c

y
b

y
 + c

v
b

v
 + c

w
b

w
 + c

k
b

k
 and c . a =

c
x
a

x
 + c

y
a

y
 + c

v
a

v
 + c

w
a

w
 + c

k
a

k
 on the one hand, we have for            d c a b c b a c a b :

d = (c . b)a – (c . a)b

d = (c . b) (a
x
i + a

y
j + a

v
v + a

w
w + a

k
k) – (c . a) (b

x
i + b

y
j + b

v
v + b

w
w + b

k
k)

d = (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))i + (c

x
(a

y
b

x
 – b

y
a

x
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w

– b
y
a

w
) + c

k
(a

y
b

k
 – b

y
a

k
))j + (c

x
(a

v
b

x
 – b

v
a

x
) + c

y
(a

v
b

y 
– b

v
a

y
) + c

w
(a

v
b

w
 – b

v
a

w
) + c

k
(a

v
b

k
 – b

v
a

k
))v + (c

x
(a

w
b

x
 – b

w
a

x
) + c

y
(a

w
b

y

– b
w
a

y
) + c

v
(a

w
b

v
 – b

w
a

v
) + c

k
(a

w
b

k
 – b

w
a

k
))w + (c

x
(a

k
b

y
 – b

k
a

y
) + c

y
(a

k
b

y 
– b

k
a

y
) + c

v
(a

k
b

v
 – b

x
a

v
) + c

w
(a

k
b

w
 – b

k
a

w
))i

d = (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))i + (–c

x
(a

x
b

y
 – b

x
a

y
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w

– b
y
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))j + (–c

x
(a

x
b

v
 – b

x
a

v
) – c

y
(a

y
b

v 
– b

y
a

v
) + c

w
(a

v
b

w
 – b

v
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))v + (–c

x
(a

x
b

w
 – b

x
a

w
) –

c
y
(a

y
b

w 
– b

y
a

w
) – c

v
(a

v
b

w
 – b

v
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))w + (–c

x
(a

x
b

k
 – b

x
a

k
) – c

y
(a

y
b

k 
– b

y
a

k
) – c

v
(a

v
b

k
 – b

v
a

k
) – c

w
(a

w
b

k
 – b

w
a

k
))k

...(73)
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On the other hand, the 3x5 matrix (a x b) expressed as C
5,2

 = 10 matrices (2x2) becomes:

x y y v y wx v x w x k
x y v w k

x y y v y wx v x w x k
x y v w k

y k v w v k w k

y k v w v k w k

a a a a a aa a a a a a
a a a a a

b b b b b bb b b b b b
b b b b b

a a a a a a a a

b b b b b b b b

        

   

i j v w k

a b u u u u u u

u u u u

vwk jwk jvk jvw iwk ivk

ivw ijk ijw ijv

Note: Each 2x2 matrix comes from eliminating three columns and the first row, containing three-vector unit bases. The
sign of each matrix, could be positive or negative, depending on its use. Let’s start with positive sign to all matrices to
check the law of formation of signs:

   x y v w kc c c c c       d c a b i j v w k

x y y vx v x w x k

x y y vx v x w x k

y w y k v w v k w k

y w y k v w v k w k

a a a aa a a a a a

b b b bb b b b b b

a a a a a a a a a a

b b b b b b b b b b

 
    

  
      
 

u u u u u

u u u u u

vwk jwk jvk jvw iwk

ivk ivw ijk ijw ijv

= (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))u

jvwk
 + (–c

x
(a

x
b

y
 – b

x
a

y
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w

– b
y
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))u

vwki
 + (–c

x
(a

x
b

v
 – b

x
a

v
) – c

y
(a

y
b

v 
– b

y
a

v
) + c

w
(a

v
b

w
 – b

v
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))u

wkij
 + (–c

x
(a

x
b

w
 – b

x
a

w
)

– c
y
(a

y
b

w 
– b

y
a

w
) – c

v
(a

v
b

w
 – b

v
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))u

kijv
 + (–c

x
(a

x
b

k
 – b

x
a

k
) – c

y
(a

y
b

k 
– b

y
a

k
) – c

v
(a

v
b

k
 – b

v
a

k
) – c

w
(a

w
b

k
 –

b
w
a

k
))u

ijvw
...(74)

By taking the unit bases with four-letter subscripts as equal to that missing, i.e.: u
jvwk

 = j x (v, w, k) = i, u
vwki

 = v x (w,
k, i) = j, u

wkij
 = w x (k, i, j) = v, u

kijv
 = k x (i, j, v) = w, u

ijvw
 = i x (j, v, w) = k; and giving negative sign to the matrix without

the linked missing basis m(i, j, v, w, k) in a
m
(a

x, y, v, w, k
), inside the parenthesis, as the sign of the coefficient c

p
, for p = x,

y, v, w, we obtain:

d = (c
y
(a

x
b

y
 – b

x
a

y
) + c

v
(a

x
b

v 
– b

x
a

v
) + c

w
(a

x
b

w
 – b

x
a

w
) + c

k
(a

x
b

k
 – b

x
a

k
))i + (–c

x
(a

x
b

y
 – b

x
a

y
) + c

v
(a

y
b

v 
– b

y
a

v
) + c

w
(a

y
b

w

– b
y
a

w
) + c

k
(a

y
b

k
 – b

y
a

k
))j + (–c

x
(a

x
b

v
 – b

x
a

v
) – c

y
(a

y
b

v 
– b

y
a

v
) + c

w
(a

v
b

w
 – b

v
a

w
) + c

k
(a

v
b

k
 – b

v
a

k
))v + (–c

x
(a

x
b

w
 – b

x
a

w
) –

c
y
(a

y
b

w 
– b

y
a

w
) – c

v
(a

v
b

w
 – b

v
a

w
) + c

k
(a

w
b

k
 – b

w
a

k
))w + (–c

x
(a

x
b

k
 – b

x
a

k
) – c

y
(a

y
b

k 
– b

y
a

k
) – c

v
(a

v
b

k
 – b

v
a

k
) – c

w
(a

w
b

k
 –

b
w
a

k
))k ...(75)

This process, can be done directly by operating in ascending order the 4x5 vector matrix, moving the first column to
the last one, after each matrix operation, until finishing, generalizable, easily programmable and applicable to any 4xN (or
4x2N in the case of complex vectors) vector matrix:

Figure 5: Graph Showing the Way to Proceed with a 4x6 Matrix of Complex Vectors

 

Figure 4: Graph Showing the Way to Proceed with any 4xN Matrix of Pure Vectors

           𝐝 = 𝐜 × (𝐚  𝐛) = ተ

𝐢    𝐣    𝐤
𝑐𝑥 𝑐𝑦 𝑐𝑣

𝑎𝑥 𝑎𝑦 𝑎𝑣

𝑏𝑥 𝑏𝑦 𝑏𝑣

𝐰
𝑐𝑤

𝑎𝑤

𝑏𝑤

𝐤
𝑐𝑘

𝑎𝑘

𝑏𝑘

ተ  
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7.4. Three-Dimensional Cross Product of Complex Vectors

c x (a x b) = (c . b)a – (c . a)b

The procedure used for cross triple product of pure vectors is similarly applied on 3D-complex vectors (really 6D).
For: a = (a

x
 + ja

x
)i + (a

y
 + ja

y
)j + (a

z
 + ja

z
)k, b = (b

x
 + jb

x
)i + (b

y
 + jb

y
)j + (b

z
 + jb

z
)k, c = (c

x
 + jc

x
)i + (c

y
 + jc

y
)j + (c

z
 + jc

z
)k.

Applying as above the 4x6 skewed complex cross product matrix model the result is obtained directly:

d = [c
y
(a

x
b

y
 – b

x
a

y
) + c

z
(a

x
b

z 
– b

x
a

z
) + c

X
(a

x
b

X
 – b

x
a

X
) + c

Y
(a

x
b

Y
 – b

x
a

Y
) + c

Z
(a

x
b

Z
 – b

x
a

Z
)]i + [–c

x
(a

x
b

y
 – b

x
a

y
) + c

z
(a

y
b

z

– b
y
a

z
) + c

X
(a

y
b

X
 – b

y
a

X
) + c

Y
(a

y
b

Y
 – b

y
a

Y
) + c

Z
(a

y
b

Z
 – b

y
a

Z
)]j + [–c

x
(a

x
b

z
 – b

x
a

z
) – c

y
(a

y
b

z 
– b

y
a

z
) + c

X
(a

z
b

X
 – b

z
a

X
) + c

Y
(a

z
b

y

– b
z
a

Y
) + c

Z
(a

z
b

Z
 – b

z
a

Z
)]k +[–c

x
(a

x
b

X
 – b

x
a

X
) – c

y
(a

y
b

X 
– b

y
a

X
) – c

z
(a

z
b

X
 – b

z
a

X
) + c

Y
(a

X
b

Y
 – b

X
a

Y
) + c

Z
(a

X
b

Z
 – b

X
a

Y
)]i +

[–c
x
(a

x
b

Y
 – b

x
a

Y
) – c

y
(a

y
b

Y 
– b

y
a

Y
) – c

z
(a

z
b

Y
 – b

z
a

Y
) – c

X
(a

X
b

Y
 – b

X
a

Y
) + c

Z
(a

Y
b

Z
 – b

Y
a

Z
)]j + [–c

x
(a

x
b

Z
 – b

x
a

Z
) – c

y
(a

y
b

Z 
– b

y
a

Z
)

– c
z
(a

z
b

Z
 – b

z
a

Z
) – c

X
(a

X
b

Z
 – b

X
a

Z
) – c

Y
(a

Y
b

Z
 – b

Y
a

Z
)]k ...(76)

This must be equal Gibbs (1884) to d = c x (a x b) = (c . b)a – (c . a)b, as indeed it is.

d = (c . b)a – (c . a)b = (c
b
a

x
 + c

a
b

x
)i + (c

b
a

y
 + c

a
b

y
)j + (c

b
a

z
 + c

a
b

z
)k + (c

b
a

X
 + c

a
b

X
)i + (c

b
a

Y
 + c

a
b

Y
)j + (c

b
a

Z
 + c

a
b

Z
)k

...(77)

For: 
a x x y y z z X X Y Y Z Z

b x x y y z z X X Y Y Z Z

c c a c a c a c a c a c a

c c b c b c b c b c b c b

       
        

...(78)

Applying definitions in Equation (78) and developing the differences in Equation (77), is obtained the expression
(76).

8. N-Dimensional Dot Triple-Product of Three Vectors

Let’s see examples checking the relation given in Gibbs (1884):

             d c a b b c a a b c

8.1. Three-Dimensional Dot Triple Product of Pure Vectors

Now, we will try to obtain a direct procedure for the Dot product. Let’s start with the particular case of a = a
x
i + a

y
j,

b = b
x
i + b

y
j and c = c

x
i + c

y
j + c

z
k.

 0

0
x y x y x y

x y

a a a b b a

b b

   
i j k

a b k ;

 0x y y z x z y x x y

x y z

b b b c b c c a a c

c c c

     
i j k

b c i j k

 
0

x y z z y z x x y x y

x y

c c c c a c a c a a c

a a

      
i j k

c a i j k

d = c . (a x b) = (c
x
i + c

y
j + c

z
k) . (a

x
b

y
 – b

x
a

y
)k = c

z
(a

x
b

y
 – b

x
a

y
) ...(79)

d = b . (c x a) = (b
x
i + b

y
j) . [–c

z
a

y
i + c

z
a

x
j + (c

y
a

x
 – a

x
c

y
)k] = c

z
(a

x
b

y
 – b

x
a

y
) ...(80)

d = a . (b x c) = (a
x
i + a

y
j) . [b

y
c

z
i – b

x
c

z
j + (c

y
a

x
 – a

x
c

y
)k] = c

z
(a

x
b

y
 – b

x
a

y
) ...(81)

In the general 3D case, for a = a
x
i + a

y
j + a

z
k, b = b

x
i + b

y
j + b

z
k, and c = c

x
i + c

y
j + c

z
k
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     x y z y z y z x z x z x y x y

x y z

a a a a b b a a b b a a b b a

b b b

       
i j k

a b i j k

 d = c . (a x b) = (c
x
i + c

y
j + c

z
k) . [(a

y
b

z
 – b

y
a

z
)i – (a

x
b

z
 – b

x
a

z
)j + (a

x
b

y
 – b

x
a

y
)k]

d = c . (a x b) = c
x
(a

y
b

z
 – b

y
a

z
) – c

y
(a

x
b

z
 – b

x
a

z
) + c

z
(a

x
b

y
 – b

x
a

y
) = c

x
(a

y
b

z
 – b

y
a

z
) + c

y
(a

z
b

x
 – b

z
a

x
) + c

z
(a

x
b

y
 – b

x
a

y
)

...(82)

Or using directly:

     
x y z

x y z x y z y z y x z x z z x y x y

x y z

c c c

a a a c a b b a c a b b a c a b b a

b b b

      ...(83)

This is the volume of a parallelepiped of sides a, b and c  for the particular and general 3D-cases.

8.2. Four-Dimensional Dot Product of Three Pure Vectors

            c a b b c a a b c

This case should provide the volume of a three-dimensional parallelepiped in a four-dimensional space. Thus, as
above when making the products c . (a x b) with 2x2 matrices considering the subscripts of the unit basis in ascending
order, positive signs are assigned if added subscript of the factor included (c

x
, c

y
, c

v
, c

w
) multiplying the parenthesis is

outside the ascending order of the subscripts located inside the parenthesis. If this is not occurring, negative signs
apply:

   x y v wc c c c      d c a b i j v w x y y v y wx v x w v w

x y y v y wx v x w v w

a a a a a aa a a a a a

b b b b b bb b b b b b

        
  

u u u u u uvw jw jv iw iv ij

...(85)

So, multiplying matrices by coefficients c
m
 indicated by subscripts of u

pq
 = p + q, and assigning the positive sign if

m  is outside the subscripts order of u
pq 

and the negative sign if not, we have:

d = c . (a x b) = (c
x
i + c

y
j + c

v
v + c

w
w) . [(a

x
b

y
 – b

x
a

y
)(v, w) + (a

x
b

v
 – b

x
a

v
)(–j, w) + (a

x
b

w
 – b

x
a

w
)(–j, –v) + (a

y
b

v
 – b

y
a

v
)

(i, w) + (a
y
b

w
 – b

y
a

w
)(i, –v) + (a

v
b

w
 – b

v
a

w
)(i, j)]

d = c . (a x b) = (c
v
 + c

w
) (a

x
b

y
 – b

x
a

y
) + (–c

y
 + c

w
) (a

x
b

v
 – b

x
a

v
) + (–c

y
 – c

v
) (a

x
b

w
 – b

x
a

w
) + (c

x
 + c

w
) (a

y
b

v
 – b

y
a

v
) + (c

x

– c
v
) (a

y
b

w
 – b

y
a

w
) + (c

x
 + c

y
) (a

v
b

w
 – b

v
a

w
)

d = c . (a x b) = c
x
[(a

y
b

v
 – b

y
a

v
) + (a

y
b

w
 – b

y
a

w
) + (a

v
b

w
 – b

v
a

w
)] + c

y
[–(a

x
b

w
 – b

x
a

w
) – (a

x
b

v
 – b

x
a

v
) + (a

v
b

w
 – b

v
a

w
)] +

c
v
[(a

x
b

y
 – b

x
a

y
) – (a

x
b

w
 – b

x
a

w
) – (a

y
b

w
 – b

y
a

w
)] + c

w
[(a

x
b

y
 – b

x
a

y
) + (a

x
b

v
 – b

x
a

v
) + (a

y
b

v
 – b

y
a

v
)] ...(86)

Similarly,

   x y v wb b b b      d b c a i j v w
x y y v y wx v x w v w

x y y v y wx v x w v w

c c c c c cc c c c c c

a a a a a aa a a a a a

        
  

u u u u u uvw jw jv iw iv ij

= (b
x
i + b

y
j + b

v
v + b

w
w) . [(c

x
a

y
 – a

x
c

y
)(v, w) + (c

x
a

v
 – a

x
c

v
)(–j, w) + (c

x
a

w
 – a

x
c

w
)(–j, –v) + (c

y
a

v
 – a

y
c

v
)(i, w) + (c

y
a

w

– a
y
c

w
)(i, –v) + (c

v
a

w
 – a

v
w

w
)(i, j)]

= (b
v
 + b

w
) (c

x
a

y
 – a

x
c

y
) + (–b

y
 + b

w
) (c

x
a

v
 – a

x
c

v
) + (–b

y
 – b

v
) (c

x
a

w
 – a

x
c

w
) + (b

x
 + b

w
) (c

y
a

v
 – a

y
c

v
) + (b

x
 – b

v
) (c

y
a

w
 –

a
y
c

w
) + (b

x
 + b

y
) (c

v
a

w
 – a

v
c

w
)

= c
x
[(a

y
b

v
 – b

y
a

v
) + (a

y
b

w
 – b

y
a

w
) + (a

v
b

w
 – b

v
a

w
)] + c

y
[–(a

x
b

w
 – b

x
a

w
) – (a

x
b

v
 – b

x
a

v
) + (a

v
b

w
 – b

v
a

w
)] + c

v
[(a

x
b

y
 – b

x
a

y
)

– (a
x
b

w
 – b

x
a

w
) – (a

y
b

w
 – b

y
a

w
)] + c

w
[(a

x
b

y
 – b

x
a

y
) + (a

x
b

v
 – b

x
a

v
) + (a

y
b

v
 – b

y
a

v
)] ...(87)

As is shown above, this model satisfies the general vector equality demonstrated in Gibbs (1884) for Dot triple

product:             c a b b c a a b c :
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Or: 
x y v w x y v w x y v w

x y v w x y v w x y v w

x y v w x y v w x y v w

c c c c b b b b a a a a

a a a a c c c c b b b b

b b b b a a a a c c c c

  d

= c
x
[(a

y
b

v
 – b

y
a

v
) + (a

y
b

w
 – b

y
a

w
) + (a

v
b

w
 – b

v
a

w
)] + c

y
[–(a

x
b

w
 – b

x
a

w
) – (a

x
b

v
 – b

x
a

v
) + (a

v
b

w
 – b

v
a

w
)] + c

v
[(a

x
b

y

– b
x
a

y
) – (a

x
b

w
 – b

x
a

w
) – (a

y
b

w
 – b

y
a

w
)] + c

w
[(a

x
b

y
 – b

x
a

y
) + (a

x
b

v
 – b

x
a

v
) + (a

y
b

v
 – b

y
a

v
)] ...(88)

 Namely, in a space of four dimensions exists a lot of figures like the rectilinear line represented in one, two, three and
four dimensions; two-dimensional curve lines, three-dimensional curve lines and also four-dimensional curve lines, two
dimensional surfaces, three-dimensional surfaces and also four-dimensional surfaces, three-dimensional parallelepipeds
and also four-dimensional parallelepipeds and many other figures familiar or unfamiliar to us. In the case above we were
analyzing a scalar triple product which gives us, as said, the three-dimensional volume of a parallelepiped of sides a, b,
and c inside a four-dimensional space.

8.3. Three-Dimensional Dot Product of Three Complex Vectors

            c a b b c a a b c

The same general procedure for Dot triple product applied to pure vectors is used on three “3D” (6D)-complex
vectors a, b and c, for: a = (a

x
 + ja

X
)i + (a

y
 + ja

Y
)j + (a

z
 + ja

Z
)k, b = (b

x
 + jb

X
)i + (b

y
 + jb

Y
)j + (b

z
 + jb

Z
)k, c = (c

x
 + jc

X
)i + (c

y

+ jc
Y
)j + (c

z
 + jc

Z
)k. By applying the following 4x6 direct Dot triple-product matrix of real and imaginary vectors the result

of C
5,2 

=10 matrices (2x2) per each factor c
m
 (for m = x, y, z, X, Y, Z) is obtained directly:

     
x y z X Y Z x y z X Y Z x y z X Y Z

x y z X Y Z x y z X Y Z x y z X Y Z

x y z X Y Z x y z X Y Z x y z X Y Z

c c c c c c b b b b b b a a a a a a

a a a a a a c c c c c c b b b b b b

b b b b b b a a a a a a c c c c c c

          c a b b c a a b c

= c
x
[(a

y
b

z
 – b

y
a

z
) + (a

y
b

X
 – b

y
a

X
) + (a

y
b

Y
 – b

y
a

Y
) + (a

y
b

Z
 – b

y
a

Z
) + (a

z
b

X
 – b

z
a

X
) + (a

z
b

Y
 – b

z
a

Y
) + (a

z
b

Z
 – b

z
a

Z
) + (a

X
b

Y
 –

b
X
a

Y
) + (a

X
b

Z
 – b

X
a

Z
) + (a

Y
b

Z
 – b

Y
a

Z
)] + c

y
[–(a

x
b

z
 – b

x
a

z
) – (a

x
b

X
 – b

x
a

X
) – (a

x
b

Y
 – b

x
a

Y
) – (a

x
b

Z
 – b

x
a

Z
) + (a

z
b

X
 – b

z
a

X
) + (a

z
b

Y

– b
z
a

Y
) + (a

z
b

Z
 – b

z
a

Z
) + (a

X
b

Y
 – b

X
a

Y
) + (a

X
b

Z
 – b

X
a

Z
) + (a

Y
b

Z
 – b

Y
a

Z
)] + c

z
[(a

x
b

y
 – b

x
a

y
) – (a

x
b

X
 – b

x
a

Z
) – (a

x
b

Y
 – b

x
a

Y
) – (a

x
b

Z

– b
x
a

Z
) – (a

y
b

X
 – b

y
a

X
) – (a

y
b

Y
 – b

y
a

Y
) – (a

y
b

Z
 – b

y
a

Z
) + (a

X
b

Y
 – b

X
a

Y
) + (a

X
b

Z
 – b

X
a

Z
) + (a

Y
b

Z
 – b

Y
a

Z
)] + c

X
[(a

x
b

y
 – b

x
a

y
) +

(a
x
b

z
 – b

x
a

z
) + (a

y
b

z
 – b

y
a

z
) – (a

x
b

Y
 – b

x
a

Y
) – (a

y
b

Y
 – b

y
a

Y
) – (a

z
b

Y
 – b

z
a

Y
) – (a

x
b

Z
 – b

x
a

Z
) – (a

y
b

z
 – b

y
a

z
) – (a

z
b

Y
 – b

z
a

Z
) + (a

Y
b

Z

– b
Y
a

Z
)] + c

Y
[(a

x
b

y
 – b

x
a

y
) + (a

x
b

z
 – b

x
a

z
) + (a

x
b

X
 – b

x
a

X
) + (a

y
b

z
 – b

y
a

z
) + (a

y
b

X
 – b

y
a

X
) + (a

z
b

X
 – b

z
a

X
) – (a

x
b

Z
 – b

x
a

Z
) – (a

y
b

Z

– b
y
a

Z
) – (a

z
b

Z
 – b

z
a

Z
) – (a

X
b

Z
 – b

X
a

Z
)] + c

Z
[(a

x
b

y
 – b

x
a

y
) + (a

x
b

z
 – b

x
a

z
) + (a

x
b

X
 – b

x
a

X
) + (a

x
b

Y
 – b

x
a

Y
) + (a

y
b

z
 – b

y
a

z
) + (a

y
b

X

– b
y
a

X
) + (a

y
b

Y
 – b

y
a

Y
) + (a

z
b

X
 – b

z
a

X
) + (a

z
b

Y
 – b

z
a

Y
) + (a

X
b

Y
 – b

X
a

Y
)] ...(89)

9. Complex Vectors: Summary (and with the Imaginary Part Null for Pure Vectors)

From results, and definitions in sections above, can be derived the following properties for complex vectors, additional
to those known of pure vectors.

A) r = (a + jb)i + (c + jd)j + ... + (s + jt)n = (ai + cj + ... + sn) + [b(ji) + d(jj) + ... + t(jn)]. A basis vector v multiplied by

1j    creates a new basis vector ˆ j vv , or an imaginary vector v̂ , perpendicular to v.

B) r =  + ̂ ;  =  ai + cj + ... + sn and ̂  = b(ji) + d(jj) + ... + t(jn) = b î  + d ĵ  + ... + t n̂

C) r = ru
r
 = u +  û , where u and û  are perpendicular unit vectors.

For 2 2 2 2 2;r a c s        and 2 2 2b d t     .

So, 2 2 2 2 2 2r a c s b d t         .

D)  ˆcos sin jr r re            r u u r u u
 

r ru u , where r, inside a space of 2N dimensions, is located in the

plane formed by the perpendicular vectors  and ̂ ; and  is the angle between r and . In this way, we can write

that  = rcos and  = rsin.



Jorge A. Franco / Int.J.Pure&App.Math.Res. 3(2) (2023) 1-19 Page 18 of 19

E) Dot product for basis vectors where p   q: p.q = 0; p.p = q.q = 1 for p and q = i, j, n, ..., ˆ ˆ ˆ, ,i j n .

F) v = z(k(r)) = z(k(reju
r
)) = kz(reju

r
), where k is a scalar and jz z e   a complex number. In addition to multiplying by

k, a rotation  of the vector r is produced by z: i.e.:            ˆcos sinjj j
rz e k re k z re u k z r           v ur u u .

G) Multi-Dimensional Dot product of TWO Complex Vectors:

 1 2 1 21

N

i i i ix x y y  1 2r r

H) Multi-Dimensional Cross product of TWO Complex Vectors:

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

ˆ ˆ ˆ ˆ

N N

N N

x x x x y y y y

x x x x y y y y

i j k n 
 
 

i j k n

= sum of all the 2x2 matrices:

1 2

2 2

0

0
a a

a b

x x

x x

u a b]ab[

 for 
,

1 , 2

and

a N and b N

  
   

a i n b j n

 
 

, 

ˆ

ˆ1 1

ˆ2 2

ˆ

0

0
a d

a d

x y

x y

] [
u a

ad
d

for 
ˆ ˆ ˆ,

ˆ1 , 1

and

a N and d N

   
 

   

a i n

 
d i n 

or 

ˆˆ

ˆˆ1 1

ˆˆ2 2

ˆˆ

0

0
c d

c d

y y

y y

] [
u

cd
c d

 for 
ˆ ˆˆ ˆ,

ˆˆ 1 , 1

and

c N and d N

   
 

   

i n

 
c d j n 

I) 2N-Dimensional Dot product of THREE Complex Vectors satisfying:

            c a b b c a a b c

 
x y w X Y W

x y w X Y W

x y w X Y W

c c c c c c

a a a a a a

b b b b b b

   d c a b

 
 
 

. See sub-sections 8.2 and 8.3.

J) 2N-Dimensional Cross product of THREE Complex Vectors satisfying:

          c a b c b a c a b

Doing as indicated in Figure 6, changing the initial column to the last one and repeating we obtain the resultant sum
of matrices.

(See sub-sections 7.2 and 7.4.)

10. Conclusion

New expressions for Multidimensional Cross and Dot products of Complex Vectors have been achieved, by using
known general relations of pure vectors Gibbs (1884) and showing how the expression of complex roots on each axis is
obtained as a natural solution to the strategic problem of cutting a parabola with its directrix (they never cut each other).
With these foundations we defined and achieved the calculation the Multidimensional Dot product of two Complex

Figure 6: Graph Showing the Way to Proceed with any 4x2N Matrix of Complex Vectors
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Vectors and , giving as result a real number; and also, of its Multidimensional Cross Product, yielding another
complex vector, perpendicular to  r

1
 and r

2
. The used matrices of calculation give consistent results for both the Dot

and Cross Product of two pure or complex vectors, considered them as pure or complex lines (r
1
 . r

2
 = r

1
r

2
 cos,

r
1
 x r

2
 = r

1
r

2
 sinn). Based on the general definitions indicated above and those found in Gibbs (1884) it was also

possible to get the Multi-Dimensional Dot and Cross complex triple products, c . (a x b) and c x (a x b). Similar analyses
can be developed in detail (as in this work) and checked for other N-Dimensional Dot and Cross products with
general relations provided in Gibbs (1884), such as:

a) [ × ] . [ × ] = ()(.) – ()()

b) [ × ] × [  × ] = (  × )  – ( × ) = ( × ) – ( × )

c)  × [ × [ × ]] = ( × ) – () ×  = () ×  – ()× 

d) [ × ] . [ × ] × [ × ] = ( × )(  × ) – ( × )(  × )

= ( ×  )( × ) – ( × )(  × ) = ( × )( × ) – ( × )( × )

e) [ × ] . [ × ] × [ × ] = ( × )2.

Finally, this work shows that the definition of “the conjugate” of a complex number is a forced (false) concept that
leads to unsolvable contradictions, not only with the definition of the modulus of a complex vector, but may be one of
the causes that have so far prevented obtaining an adequate definition of the complex vector itself (such as the one
achieved in Section 2.2).
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